References

Researchers publishing results obtained with NanoTCAD ViDES should explicitly say in the article that results have been obtained using the NanoTCAD ViDES code, putting a reference to the website (i.e., http://vides.nanotcad.com)

Please also cite the following works:

For GNR simulations:

G. Fiori, G. Iannaccone, “Simulation of Graphene Nanoribbon Field-Effect Transistors”, IEEE, Electron Device Letters, Vol. 28, Issue 8, pp. 760 – 762, 2007.

Y. Yoon, G. Fiori, S. Hong, J. Guo and G. Iannaccone, “Performance Comparison of Graphene Nanoribbon FETs With Schottky Contacts and Doped Reservoirs”, IEEE Transaction on Electron Devices, Vol. 55, pp. 2314-2323, 2008.

For CNT simulations:

G. Fiori, G. Iannaccone, G. Klimeck, “A Three-Dimensional Simulation Study of the Performance of Carbon Nanotube Field-Effect Transistors With Doped Reservoirs and Realistic Geometry”, IEEE Transaction on Electron Devices, Vol. 53, Issue 8, pp. 1782-1788, 2006.

G. Fiori, G. Iannaccone, G. Klimeck, “Coupled Mode Space Approach for the Simulation of Realistic Carbon Nanotube Field-Effect Transistors”, IEEE Transaction on Nanotechnology, Vol.6, Issue 4, pp. 475-480, 2007.

For graphene simulations:

G. Fiori, G. Iannaccone, “Ultralow-Voltage Bilayer graphene tunnel FET”, IEEE Electron Device Letters, Vol. 30, pp.1096-1098, 2009.

G. Fiori, G. Iannaccone, “On the possibility of tunable-gap bilayer graphene FET”, IEEE Electron Device Letters, Vol. 30, pp. 261-264, 2009.

———————————————————————————

For a clear understanding of Non-Equilibrium Green’s Function Formalism here some useful references 
  • S. Datta,”Electronic transport in mesoscopic systems”, Cambridge, University Press, 1995.
  • S. Datta,”Quantum Transport: Atom to Transistor”, Cambridge, University Press.
  • S. Datta, “Nanoscale device modeling : Green’s function method,” Super- lattices Microstruct., vol. 28, no. 4, pp. 253–277, Jul. 2000.
  • S. Datta, “ECE 659 Quantum Transport: Atom to Transistor”, http://nanohub.org/resources/6172

For a description of the pz-tight binding Hamiltonian in carbon nanotubes:

  • J. Guo, S. Datta, M. Lundstrom, and M. P. Anantram, Multi-scale modeling of carbon nanotube transistors,Int. J. Multiscale Comput. Eng., vol. 2, pp. 257260, 2004.
  • G. Fiori, G. Iannaccone, G. Klimeck, “Coupled Mode Space Approach for the Simulation of Realistic Carbon Nanotube Field-Effect Transistors”, IEEE Transaction on Nanotechnology, Vol.6, Issue 4, pp. 475-480, 2007.

For a description of the pz Hamiltonian in bilayer graphene (as well monolayer graphene):

Comments are closed.